
Prolate spheroidal wave functions (PSWFs) play an important role in various areas, from
physics (e.g. wave phenomena, fluid dynamics) to engineering (e.g. signal processing,
filter design). Even though the significance of PSWFs was realized at least half a century
ago, and they frequently occur in applications, their analytical properties have not been
investigated as much as those of many other special functions. In particular, despite some
recent progress, the gap between asymptotic expansions and numerical experience, on the
one hand, and rigorously proven explicit bounds and estimates, on the other hand, is still
rather wide.
This paper attempts to improve the current situation. We analyze the differential operator
associated with PSWFs, to derive fairly tight estimates on its eigenvalues. By combin-
ing these inequalities with a number of standard techniques, we also obtain several other
properties of the PSFWs. The results are illustrated via numerical experiments.
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1 Introduction

The principal goal of this paper is non-asymptotic analysis of bandlimited functions. A
function f : R → R is bandlimited of band limit c > 0, if there exists a function σ ∈ L2 [−1, 1]
such that

f(x) =

∫ 1

−1
σ(t)eicxt dt. (1)

In other words, the Fourier transform of a bandlimited function is compactly supported.
While (1) defines f for all real x, one is often interested in bandlimited functions, whose
argument is confined to an interval, e.g. −1 ≤ x ≤ 1. Such functions are encountered in
physics (wave phenomena, fluid dynamics), engineering (signal processing), etc. (see e.g.
[14], [19], [20]).

About 50 years ago it was observed that the eigenfunctions of the integral operator
Fc : L2 [−1, 1] → L2 [−1, 1], defined via the formula

Fc [ϕ] (x) =

∫ 1

−1
ϕ(t)eicxt dt, (2)

provide a natural tool for dealing with bandlimited functions, defined on the interval [−1, 1].
Moreover, it was observed (see [9], [10], [12]) that the eigenfunctions of Fc are precisely the
prolate spheroidal wave functions (PSWFs), well known from the mathematical physics
[16], [19]. The PSWFs are the eigenfunctions of the differential operator Lc, defined via the
formula

Lc [ϕ] (x) = − d

dx

(

(1 − x2) · dϕ

dx
(x)

)

+ c2x2. (3)
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In other words, the integral operator Fc commutes with the differential operator Lc [9], [18].
This property, being remarkable by itself, also plays an important role in both the analysis
of PSWFs and the associated numerical algorithms [3], [4].

It is perhaps surprising, however, that the analytical properties of PSWFs have not been
investigated as thoroughly as those of several other classes of special functions. In particular,
when one reads through the classical works about the PSWFs [9], [10], [11], [12], [13], one is
amazed by the number of properties stated without rigorous proofs. Some other properties
are only supported by analysis of an asymptotic nature; see, for example, [6], [7], [15], [17].
This problem has been addressed in a number of recently published papers, for example,
[2], [4], [5]. Still, the gap between numerical experience and asymptotic expansions, on the
one hand, and rigorously proven explicit bounds and estimates, on the other hand, is rather
wide; this paper offers a partial remedy for this deficiency.

This paper is mostly devoted to the analysis of the differential operator Lc, defined
via (3). In particular, several explicit bounds for the eigenvalues of Lc are derived. These
bounds turn out to be fairly tight, and the resulting inequalities lead to rigorous proofs of
several other properties of PSWFs. The analysis is supported by and is illustrated through
several numerical experiments.

The analysis of the eigenvalues of the integral operator Fc, defined via (2), requires
tools different from those used in this paper; it will be published at a later date. The
implications of the analysis of both Lc and Fc to numerical algorithms involving PSWFs
are being currently investigated.

This paper is organized as follows. In Section 2, we summarize a number of well known
mathematical facts to be used in the rest of this paper. In Section 3, we provide a summary
of the principal results of this paper. In Section 4, we introduce the necessary analytical
apparatus and carry out the analysis. In Section 5, we illustrate the analysis via several
numerical examples.

2 Mathematical and Numerical Preliminaries

In this section, we introduce notation and summarize several facts to be used in the rest of
the paper.

2.1 Prolate Spheroidal Wave Functions

In this subsection, we summarize several facts about the PSWFs. Unless stated otherwise,
all these facts can be found in [4], [5], [7], [9], [10].

Given a real number c > 0, we define the operator Fc : L2 [−1, 1] → L2 [−1, 1] via the
formula

Fc [ϕ] (x) =

∫ 1

−1
ϕ(t)eicxt dt. (4)

Obviously, Fc is compact. We denote its eigenvalues by λ0, λ1, . . . , λn, . . . and assume that
they are ordered such that |λn| ≥ |λn+1| for all natural n ≥ 0. We denote by ψn the
eigenfunction corresponding to λn. In other words, the following identity holds for all
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integer n ≥ 0 and all real −1 ≤ x ≤ 1:

λnψn (x) =

∫ 1

−1
ψn(t)eicxt dt. (5)

We adopt the convention1 that ‖ψn‖L2[−1,1] = 1. The following theorem describes the
eigenvalues and eigenfunctions of Fc.

Theorem 1. Suppose that c > 0 is a real number, and that the operator Fc is defined via
(4) above. Then, the eigenfunctions ψ0, ψ1, . . . of Fc are purely real, are orthonormal and
are complete in L2 [−1, 1]. The even-numbered functions are even, the odd-numbered ones
are odd. Each function ψn has exactly n simple roots in (−1, 1). All eigenvalues λn of Fc

are non-zero and simple; the even-numbered ones are purely real and the odd-numbered ones
are purely imaginary; in particular, λn = in |λn|.

We define the self-adjoint operator Qc : L2 [−1, 1] → L2 [−1, 1] via the formula

Qc [ϕ] (x) =
1

π

∫ 1

−1

sin (c (x − t))

x − t
ϕ(t) dt. (6)

Clearly, if we denote by F : L2(R) → L2(R) the unitary Fourier transform, then

Qc [ϕ] (x) = χ[−1,1](x) · F−1
[

χ[−c,c](ξ) · F [ϕ] (ξ)
]

(x), (7)

i.e. Qc represents low-passing followed by time-limiting. Qc relates to Fc, defined via (4),
by

Qc =
c

2π
· F ∗

c · Fc, (8)

and the eigenvalues µn of Qn satisfy the identity

µn =
c

2π
· |λn|2 , (9)

for all integer n ≥ 0. Moreover, Qc has the same eigenfunctions ψn as Fc. In other words,

µnψn(x) =
1

π

∫ 1

−1

sin (c(x − t))

x − t
ψn(t) dt, (10)

for all integer n ≥ 0 and all −1 ≤ x ≤ 1. Also, Qc is closely related to the operator
Pc : L2(R) → L2(R), defined via the formula

Pc [ϕ] (x) =
1

π

∫ ∞

−∞

sin (c (x − t))

x − t
ϕ(t) dt, (11)

which is a widely known orthogonal projection onto the space of functions of band limit
c > 0 on the real line R.

The following theorem about the eigenvalues µn of the operator Qc, defined via (6), can
be traced back to [7]:

1 This convention agrees with that of [4], [5] and differs from that of [9].
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Theorem 2. Suppose that c > 0 and 0 < α < 1 are positive real numbers, and that the
operator Qc : L2 [−1, 1] → L2 [−1, 1] is defined via (6) above. Suppose also that the integer
N(c, α) is the number of the eigenvalues µn of Qc that are greater than α. In other words,

N(c, α) = max {k = 1, 2, . . . : µk−1 > 0} . (12)

Then,

N(c, α) =
2

π
c +

(

1

π2
log

1 − α

α

)

log c + O (log c) . (13)

According to (13), there are about 2c/π eigenvalues whose absolute value is close to one,
order of log c eigenvalues that decay exponentially, and the rest of them are very close to
zero.

The eigenfunctions ψn of Qc turn out to be the PSWFs, well known from classical
mathematical physics [16]. The following theorem, proved in a more general form in [12],
formalizes this statement.

Theorem 3. For any c > 0, there exists a strictly increasing unbounded sequence of positive
numbers χ0 < χ1 < . . . such that, for each integer n ≥ 0, the differential equation

(

1 − x2
)

ψ′′(x) − 2x · ψ′(x) +
(

χn − c2x2
)

ψ(x) = 0 (14)

has a solution that is continuous on [−1, 1]. Moreover, all such solutions are constant
multiples of the eigenfunction ψn of Fc, defined via (4) above.

For all real c > 0 and all integer n ≥ 0, the following inequality holds:

n (n + 1) < χn < n (n + 1) + c2. (15)

The following result provides an upper bound on ψ2
n(1).

Theorem 4. For all c > 0 and all natural n ≥ 0,

ψ2
n(1) < n +

1

2
. (16)

2.2 Elliptic Integrals

In this subsection, we summarize several facts about elliptic integrals. These facts can be
found, for example, in section 8.1 in [8], and in [21].

The incomplete elliptic integrals of the first and second kind are given, respectively, by
the formulae

F (y, k) =

∫ y

0

dt
√

1 − k2 sin2 t
, (17)

E(y, k) =

∫ y

0

√

1 − k2 sin2 t dt, (18)
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where 0 ≤ y ≤ π/2 and 0 ≤ k ≤ 1. By performing the substitution x = sin t, we can write
(17) and (18) as

F (y, k) =

∫ sin(y)

0

dx
√

(1 − x2) (1 − k2x2)
, (19)

E(y, k) =

∫ sin(y)

0

√

1 − k2x2

1 − x2
dx. (20)

The complete elliptic integrals of the first and second kind are given, respectively, by the
formulae

F (k) = F
(π

2
, k

)

=

∫ π/2

0

dt
√

1 − k2 sin2 t
, (21)

E(k) = E
(π

2
, k

)

=

∫ π/2

0

√

1 − k2 sin2 t dt, (22)

where 0 ≤ k ≤ 1.

2.3 Oscillation Properties of Second Order ODEs

In this subsection, we state several well known facts from the general theory of second order
ordinary differential equations (see e.g. [1]).

The following two theorems appear in Section 3.6 of [1] in a slightly different form.

Theorem 5 (distance between roots). Suppose that h(t) is a solution of the ODE

y′′(t) + Q(t)y(t) = 0. (23)

Suppose also that x < y are two consecutive roots of h(t), and that

A2 ≤ Q(t) ≤ B2, (24)

for all x ≤ t ≤ y. Then,

π

B
< y − x <

π

A
. (25)

Theorem 6. Suppose that a < b are real numbers, and that g : (a, b) → R is a continuous
monotone function. Suppose also that y(t) is a solution of the ODE

y′′(t) + g(t) · y(t) = 0, (26)

in the interval (a, b). Suppose furthermore that

t1 < t2 < t3 < . . . (27)
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are consecutive roots of y(t). If g is non-decreasing, then

t2 − t1 ≥ t3 − t2 ≥ t4 − t3 ≥ . . . . (28)

If g is non-increasing, then

t2 − t1 ≤ t3 − t2 ≤ t4 − t3 ≤ . . . . (29)

The following theorem is a special case of Theorem 6.2 from Section 3.6 in [1]:

Theorem 7. Suppose that g1, g2 are continuous functions, and that, for all real t in the
interval (a, b), the inequality g1(t) < g2(t) holds. Suppose also that the function φ1, φ2

satisfy, for all a < t < b,

φ′′
1(t) + g1(t) · φ1(t) = 0,

φ′′
2(t) + g2(t) · φ2(t) = 0. (30)

Then, φ2 has a root between every two consecutive roots of φ1.

Corollary 1. Suppose that the functions φ1, φ2 are those of Theorem 7 above. Suppose also
that

φ1(t0) = φ2(t0), φ′
1(t0) = φ′

2(t0), (31)

for some a < t0 < b. Then, φ2 has at least as many roots in (t0, b) as φ1.

Proof. By Theorem 7, we only need to show that if t1 is the minimal root of φ1 in (t0, b),
then there exists a root of φ2 in (t0, t1). By contradiction, suppose that this is not the
case. In addition, without loss of generality, suppose that φ1(t), φ2(t) are positive in (t0, t1).
Then, due to (30),

φ′′
1φ2 − φ′′

2φ1 = (g2 − g1) φ1φ2, (32)

and hence

0 <

∫ t1

t0

(g2(s) − g1(s))φ1(s)φ2(s)ds

=
[

φ′
1(s)φ2(s) − φ1(s)φ

′
2(s)

]t1
t0

= φ′
1(t1)φ2(t1) ≤ 0, (33)

which is a contradiction. ¥
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2.4 Prüfer Transformations

In this subsection, we describe the classical Prüfer transformation of a second order ODE
(see e.g. [1],[22]). Also, we describe a modification of Prüfer transformation, introduced in
[3] and used in the rest of the paper.

Suppose that we are given the second order ODE

d

dt

(

p(t)u′(t)
)

+ q(t)u(t) = 0, (34)

where t varies over some interval I in which p and q are continuously differentiable and have
no roots. We define the function θ : I → R via

p(t)u′(t)

u(t)
= γ(t) tan θ(t), (35)

where γ : I → R is an arbitrary positive continuously differentiable function. The function
θ(t) satisfies, for all t in I,

θ′(t) = −γ(t)

p(t)
sin2 θ(t) − q(t)

γ(t)
cos2 θ(t) −

(

γ′(t)

γ(t)

)

sin (2θ(t))

2
. (36)

One can observe that if u′(t̃) = 0 for t̃ ∈ I, then by (35)

θ(t̃) = kπ, k is integer. (37)

Similarly, if u(t̃) = 0 for t̃ ∈ I, then

θ(t̃) = (k + 1/2)π, k is integer. (38)

The choice γ(t) = 1 in (35) gives rise to the classical Prüfer transformation (see e.g. section
4.2 in [1]).

In [3], the choice γ(t) =
√

q(t)p(t) is suggested and shown to be more convenient
numerically in several applications. In this paper, this choice also leads to a more convenient
analytical tool than the classical Prüfer transformation.

Writing (14) in the form of (34) yields

p(t) = 1 − t2, q(t) = χn − c2t2, (39)

for |t| < min
{√

χn/c, 1
}

. The equation (35) admits the form

p(t)ψ′
n(t)

ψn(t)
=

√

p(t)q(t) tan θ(t), (40)

which implies that

θ(t) = atan

(
√

p(t)

q(t)

ψ′
n(t)

ψn(t)

)

+ πm(t), (41)
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where m(t) is an integer determined for all t by an arbitrary choice at some t = t0 (the role
of πm(t) in (41) is to enforce the continuity of θ at the roots of ψn). The first order ODE
(36) admits the form (see [3], [22])

θ′(t) = −f(t) + sin (2θ(t)) v(t), (42)

where the functions f, v are defined, respectively, via the formulae

f(t) =

√

q(t)

p(t)
=

√

χn − c2t2

1 − t2
(43)

and

v(t) = −1

4
· p(t)q′(t) + q(t)p′(t)

p(t)q(t)
=

1

2

(

t

1 − t2
+

c2t

χn − c2t2

)

. (44)

3 Summary

In this section, we summarize some of the properties of prolate spheroidal wave functions
(PSWFs), proved in Section 4. The PSWFs and the related notation were introduced in
Section 2.1. Throughout this section, the band limit c > 0 is assumed to be a fixed positive
real number.

Many properties of the PSWF ψn depend on whether the eigenvalue χn of the ODE
(14) is greater than or less than c2. The following simple relation between c, n and χn is
proved in Theorem 14 in Section 4.1.2.

Proposition 1. Suppose that n ≥ 2 is a non-negative integer.

• If n ≤ (2c/π) − 1, then χn < c2.

• If n ≥ (2c/π), then χn > c2.

• If (2c/π) − 1 < n < (2c/π), then either inequality is possible.

In the following proposition, we describe the location of “special points” (roots of ψn,
roots of ψ′

n, turning points of the ODE (14)) that depends on whether χn > c2 or χn < c2.
It is proved in Lemma 1 in Section 4.1.1 and is illustrated on Figures 1, 2.

Proposition 2. Suppose that n ≥ 2 is a positive integer. Suppose also that t1 < · · · < tn
are the roots of ψn in (−1, 1), and x1 < · · · < xn−1 are the roots of ψ′

n in (t1, tn). Suppose
furthermore that the real number xn is defined via the formula

xn =

{

maximal root of ψ′
n in (−1, 1), if χn < c2,

1, if χn > c2.
(45)

Then,

−
√

χn

c
< −xn < t1 < x1 < t2 < · · · < tn−1 < tn < xn <

√
χn

c
. (46)
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In particular, if χn < c2, then

tn < xn <

√
χn

c
< 1, (47)

and ψ′
n has n + 1 roots in the interval (−1, 1); and, if χn > c2, then

tn < xn = 1 <

√
χn

c
, (48)

and ψ′
n has n − 1 roots in the interval (−1, 1).

The following two inequalities improve the inequality (15) in Section 2.1. Their proof
can be found in Theorems 8,9 in Section 4.1.2. This is one of the principal analytical results
of this paper. The inequalities (49), (50) below are illustrated in Tables 1, 2, 3, 4.

Proposition 3. Suppose that n ≥ 2 is a positive integer. Suppose also that tn and T are
the maximal roots of ψn and ψ′

n in the interval (−1, 1), respectively. If χn > c2, then

1 +
2

π

∫ tn

0

√

χn − c2t2

1 − t2
dt < n <

2

π

∫ 1

0

√

χn − c2t2

1 − t2
dt. (49)

If χn < c2, then

1 +
2

π

∫ tn

0

√

χn − c2t2

1 − t2
dt < n <

2

π

∫ T

0

√

χn − c2t2

1 − t2
dt. (50)

Note that (49) and (50) differ only in the range of integration on their right-hand sides.

In the following proposition, we simplify the inequality (49) in Proposition 3. It is
proven in Theorem 17 and Corollary 3 in Section 4.1.3.

Proposition 4. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Then,

n <
2

π

∫ 1

0

√

χn − c2t2

1 − t2
dt =

2

π

√
χn · E

(

c√
χn

)

< n + 3, (51)

where the function E : [0, 1] → R is defined via (22) in Section 2.2.

In the following proposition, we describe a relation between χn and the maximal root
tn of ψn in (−1, 1), by providing a lower and upper bounds on 1− tn in terms of χn and c.
It is proved in Theorem 16, 18 in Section 4.1.3.

Proposition 5. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also
that tn is the maximal root of ψn in the interval (−1, 1). Then,

π2/8

χn − c2 +
√

(χn − c2)2 + (πc/2)2
< 1 − tn

<
4π2

χn − c2 +
√

(χn − c2)2 + (4πc)2
. (52)
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In the following proposition, we provide yet another upper bound on χn in terms of n.
Its proof can be found in Theorem 12 in Section 4.1.3.

Proposition 6. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Then,

χn <
(π

2
(n + 1)

)2
. (53)

We observe that, for sufficiently large n, the inequality (53) is even weaker than (15).
On the other hand, (53) can be useful for n near 2c/π, as illustrated in Tables 5, 6.

The following proposition summarizes Theorem 10 in Section 4.1.2 and Theorems 13,
15 in Section 4.1.3. It is illustrated in Tables 5, 6, 7, 8.

Proposition 7. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also
that −1 < t1 < t2 < · · · < tn < 1 are the roots of ψn in the interval (−1, 1). Suppose
furthermore that the functions f, v are defined, respectively, via (43),(44) in Section 2.4.
Then:

• For all integer (n + 1)/2 ≤ i ≤ n − 1, i.e. for all integer i such that 0 ≤ ti < tn,

π

f(ti+1) + v(ti+1)/2
< ti+1 − ti <

π

f(ti)
. (54)

• For all integer (n + 1)/2 ≤ i ≤ n − 1, i.e. for all integer i such that 0 ≤ ti < tn,

ti+1 − ti > ti+2 − ti+1 > · · · > tn − tn−1. (55)

• For all integer j = 1, . . . , n − 1,

tj+1 − tj <
π√

χn + 1
. (56)

The following proposition summarizes Theorem 15 in Section 4.1.3.

Proposition 8. Suppose that n ≥ 2 is an integer, and that χn < c2 − c
√

2. Suppose also
that −1 < t1 < t2 < · · · < tn < 1 are the roots of ψn in the interval (−1, 1). Then,

ti+1 − ti < ti+2 − ti+1 < · · · < tn − tn−1, (57)

for all integer (n + 1)/2 ≤ i ≤ n − 1, i.e. for all integer i such that 0 ≤ ti < tn.

The following proposition summarizes Theorem 4 in Section 2.1 and Theorem 19 in
Section 4.2.

Proposition 9. Suppose that n ≥ 0 is a non-negative integer, and that χn > c2. Then,

1

2
< ψ2

n(1) < n +
1

2
. (58)
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The following proposition is illustrated on Figures 1, 2. It is proved in Theorem 20 in
Section 4.1.3.

Proposition 10. Suppose that n ≥ 0 is a non-negative integer, and that x, y are two
arbitrary extremum points of ψn in (−1, 1). If |x| < |y|, then

|ψn(x)| < |ψn(y)| . (59)

If, in addition, χn > c2, then

|ψn(x)| < |ψn(y)| < |ψn(1)| . (60)

4 Analytical Apparatus

The purpose of this section is to provide the analytical apparatus to be used in the rest of
the paper, as well as to prove the results summarized in Section 3.

4.1 Oscillation Properties of PSWFs

In this subsection, we prove several facts about the distance between consecutive roots of
PSWFs (5) and find a more subtle relationship between n and χn (14) than the one given
by (15). Throughout this subsection c > 0 is a positive real number and n is a non-negative
integer. The principal results of this subsection are Theorems 8, 9, 11, and 12.

4.1.1 Special Points of ψn

We refer to the roots of ψn, the roots of ψ′
n and the turning points of the ODE (14) as

”special points”. Some of them play an important role in the subsequent analysis. These
points are introduced in the following definition.

Definition 1 (Special points). Suppose that n ≥ 2 is a positive integer. We define

• t1 < t2 < · · · < tn to be the roots of ψn in (−1, 1),

• x1 < · · · < xn−1 to be the roots of ψ′
n in (t1, tn),

• xn via the formula

xn =

{

maximal root of ψ′
n in (−1, 1), if χn < c2,

1, if χn > c2.
(61)

This definition will be used throughout all of Section 4. The relative location of some of
the special points depends on whether χn > c2 or χn < c2. This is illustrated in Figures 1,
2 and is described by the following lemma.
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Lemma 1 (Special points). Suppose that n ≥ 2 is a positive integer. Suppose also that
t1 < · · · < tn and x1 < · · · < xn are those of Definition 1. Then,

−
√

χn

c
< −xn < t1 < x1 < t2 < · · · < tn−1 < tn < xn <

√
χn

c
. (62)

In particular, if χn < c2, then

tn < xn <

√
χn

c
< 1, (63)

and ψ′
n has n + 1 roots in the interval (−1, 1); and, if χn > c2, then

tn < xn = 1 <

√
χn

c
, (64)

and ψ′
n has n − 1 roots in the interval (−1, 1).

Proof. Without loss of generality, we assume that

ψn(1) > 0. (65)

Obviously, (65) implies that

ψ′
n(tn) > 0. (66)

Suppose first that χn < c2. Then, due to the ODE (14) in Section 2.1,

ψ′
n(1) =

χn − c2

2
· ψn(1) < 0. (67)

We combine (14) and (66) to obtain

ψ′′
n(tn) =

2tn
1 − t2n

· ψ′
n(tn) > 0. (68)

In addition, we combine (61), (66), (67) to conclude that the maximal root xn of ψ′
n in

(−1, 1) satisfies

tn < xn < 1. (69)

Moreover, (65) implies that, for any root x of ψ′
n in (tn, 1),

ψ′′
n(x) = −χn − c2x2

1 − x2
· ψn(x) < 0. (70)

We combine (65), (69), (70) with (14) to obtain

c2x2
n − χn

1 − x2
n

=
ψ′′

n(xn)

ψn(xn)
< 0, (71)
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which implies both (62) and (63). In addition, we combine (14), (63) and (70) to conclude
that xn is the only root of ψ′

n between tn and 1. Thus, ψ′
n indeed has n+1 roots in (−1, 1).

Suppose now that χn > c2. We combine (14) and (65) to obtain

ψ′
n(1) =

χn − c2

2
· ψn(1) > 0. (72)

If tn < x < 1 is a root of ψ′
n, then

ψ′′
n(x) = −χn − c2x2

1 − x2
· ψn(x) < 0, (73)

therefore ψ′
n can have at most one root in (tn, 1). We combine this observation with (61),

(66), (72) and (73) to conclude that, in fact, ψ′
n has no roots in (tn, 1), and hence both (62)

and (64) hold. In particular, ψ′
n has n − 1 roots in (−1, 1). ¥

4.1.2 A Sharper Inequality for χn

In this subsection, we use the modified Prüfer transformation (see Section 2.4) to analyze
the relationship between n, c and χn. In particular, this analysis yields fairly tight lower
and upper bounds on χn in terms of c and n. These bounds are described in Theorems 8,9
below. These theorems are not only one of the principal results of this paper, but are
subsequently used in the proofs of Theorems 10, 11, 12, 17, 18.

We start with developing the required analytical machinery. In the following lemma, we
describe several properties of the modified Prüfer transformation (see Section 2.4), applied
to the prolate differential equation (14).

Lemma 2. Suppose that n ≥ 2 is a positive integer. Suppose also that the numbers
t1, . . . , tn and x1, . . . , xn are those of Definition 1 in Section 4.1.1, and that the function
θ : [−xn, xn] → R is defined via the formula

θ(t) =















(

i − 1
2

)

· π, if t = ti for some 1 ≤ i ≤ n,

atan
(

−
√

1−t2

χn−c2t2
· ψ′

n(t)
ψn(t)

)

+ m(t) · π, if ψn(t) 6= 0,

(74)

where m(t) is the number of the roots of ψn in the interval (−1, t). Then, θ has the following
properties:

• θ is continuously differentiable in the interval [−xn, xn].

• θ satisfies, for all −xn < t < xn, the differential equation

θ′(t) = f(t) + v(t) · sin(2θ(t)), (75)

where the functions f, v are defined, respectively, via (43), (44) in Section 2.4.

• for each integer 0 ≤ j ≤ 2n, there is a unique solution to the equation

θ(t) = j · π

2
, (76)

14



for the unknown t in [−xn, xn]. More specifically,

θ(−xn) = 0, (77)

θ(ti) =

(

i − 1

2

)

· π, (78)

θ(xi) = i · π, (79)

for each i = 1, . . . , n. In particular, θ(xn) = n · π.

Proof. We combine (62) in Lemma 1 with (74) to conclude that θ is well defined for all
−xn ≤ t ≤ xn, where xn is given via (61) in Definition 1. Obviously, θ is continuous, and
the identities (77), (78), (79) follow immediately from the combination of Lemma 1 and (74).
In addition, θ satisfies the ODE (75) in (−xn, xn) due to (36), (40), (42) in Section 2.4.

Finally, to establish the uniqueness of the solution to the equation (76), we make the
following observation. Due to (74), for any point t in (−xn, xn), the value θ(t) is an integer
multiple of π/2 if and only if t is either a root of ψn or a root of ψ′

n. We conclude the proof
by combining this observation with (61), (77) and (79). ¥

Remark 1. We observe that, due to (77), (78), (79), for all i = 1, . . . , n,

sin(2θ(ti)) = sin(2θ(xi)) = 0, (80)

where t1, . . . , tn, x1, . . . , xn are those of Definition 1 in Section 4.1.1, and θ is that of
Lemma 2. This observation will play an important role in the analysis of the ODE (75)
throughout the rest of this section.

In the following lemma, we prove that θ of Lemma 2 is monotonically increasing.

Lemma 3. Suppose that n ≥ 2 is a positive integer. Suppose also that the real number
xn and the function θ : [−xn, xn] → R are those of Lemma 2 above. Then, θ is strictly
increasing in [−xn, xn], in other words,

θ′(t) > 0, (81)

for all −xn < t < xn.

Proof. We first prove that

d

dt

(

v

f

)

(t) > 0, (82)

for −xn < t < xn, where the functions f, v are defined, respectively, via (43), (44) in
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Section 2.4. We differentiate v/f with respect to t to obtain

(

v

f

)′

= −
(

p′q + q′p

4pq
·
√

p

q

)′

= −
(

p′q + q′p

4q3/2p1/2

)′

=
q−3p−1

4
·
[(

3

2
q1/2p1/2q′ +

1

2
q3/2p−1/2p′

)

(

p′q + q′p
)

−
(

p′′q + 2p′q′ + q′′p
)

q3/2p1/2
]

=
q−5/2p−3/2

4
·
[(

3

2
q′p +

1

2
p′q

)

(

p′q + q′p
)

− pq
(

p′′q + 2p′q′ + q′′p
)

]

=
q−5/2p−3/2

4
·
[

3

2
p2

(

q′
)2

+
1

2
q2

(

p′
)2 − q2pp′′ − p2qq′′

]

> 0, (83)

since, due to (39),

p(t) > 0, p′′(t) = −2 < 0, q(t) > 0, q′′(t) = −2c2 < 0. (84)

We now proceed to prove (81) for 0 < t < xn. Suppose that, by contradiction, there exists
0 < x < xn such that

θ′(x) < 0. (85)

Combined with (75) in Lemma 2 above, (85) implies that

1 +
v(x)

f(x)
· sin(2θ(x)) =

f(x) + v(x) · sin(2θ(x))

f(x)
< 0, (86)

and, in particular, that

sin(2θ(x)) < 0. (87)

Due to Lemma 2 above, there exists an integer (n + 1)/2 ≤ i ≤ n such that
(

i − 1

2

)

· π < θ(x) < i · π. (88)

Moreover, due to (77), (78), (79), (85), (87), (88), there exists a point y such that

0 ≤ ti < x < y < xi ≤ xn, (89)

and also

θ(x) = θ(y), θ′(y) > 0. (90)

for otherwise (79) would be impossible. We combine (75) and (90) to obtain

1 +
v(y)

f(y)
· sin(2θ(x)) =

f(y) + v(y) · sin(2θ(y))

f(y)
=

θ′(y)

f(y)
> 0, (91)

in contradiction to (82), (86) and (87). This concludes the proof of (81) for 0 < t < xn.
For −xn < t < 0, the identity (81) follows now from the symmetry considerations. ¥
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The right-hand side of the ODE (75) of Lemma 2 contains a monotone term and an
oscillatory term. In the following lemma, we study the integrals of the oscillatory term
between various special points, introduced in Definition 1 in Section 4.1.1.

Lemma 4. Suppose that n ≥ 2 is an integer. Suppose also that the real numbers t1 <
· · · < tn and x1 < · · · < xn are those of Definition 1 in Section 4.1.1, and the function
θ : [−xn, xn] → R is that of Lemma 2 above. Suppose furthermore that the function v is
defined via (44) in Section 2.4. Then,

∫ ti+1

xi

v(t) · sin(2θ(t)) dt > 0, (92)

∫ xi+1

ti+1

v(t) · sin(2θ(t)) dt < 0, (93)

∫ xi+1

xi

v(t) · sin(2θ(t)) dt < 0, (94)

for all integer (n − 1)/2 ≤ i ≤ n − 1, i.e. for all integer i such that 0 ≤ xi < xn. Note that
the integral in (94) is the sum of the integrals in (92) and (93).

Proof. Suppose that i is a positive integer such that (n−1)/2 ≤ i ≤ n−1. Suppose also that
the function s : [0, n · π] → [−xn, xn] is the inverse of θ. In other words, for all 0 ≤ η ≤ n ·π,

θ(s(η)) = η. (95)

Using (75), (78), (79) in Lemma 2, we expand the left-hand side of (92) to obtain

∫ ti+1

xi

v(t) · sin(2θ(t)) dt =

∫ θ(ti+1)

θ(xi)
v(s(η)) · sin(2η) · s′(η) dη =

∫ (i+1/2)·π

i·π

v(s(η)) · sin(2η) dη

f(s(η)) + v(s(η)) · sin(2η)
=

∫ π/2

0

v(s(η + i · π)) · sin(2η) dη

f(s(η + i · π)) + v(s(η + i · π)) · sin(2η)
, (96)

from which (92) readily follows due to (44) in Section 2.4 and (81) in Lemma 3. By the
same token, we expand the left-hand side of (93) to obtain

∫ xi+1

ti+1

v(t) · sin(2θ(t)) dt =

∫ (i+1)·π

(i+1/2)·π

v(s(η)) · sin(2η) dη

f(s(η)) + v(s(η)) · sin(2η)
=

−
∫ π/2

0

v(s(η + (i + 1/2) · π)) · sin(2η) dη

f(s(η + (i + 1/2) · π)) − v(s(η + (i + 1/2) · π)) · sin(2η)
, (97)
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which, combined with (44) in Section 2.4 and (81) in Lemma 3, implies (93). Finally, for
all 0 < η < π/2,

sin(2η)

(f/v)(s(η + (i + 1/2) · π)) − sin(2η)
>

sin(2η)

(f/v)(s(η + i · π)) + sin(2η)
, (98)

since the function f/v is decreasing due to (82) in the proof of Lemma 3. The inequality
(94) now follows from the combination of (96), (97) and (98). ¥

We are now ready to prove one of the principal results of this paper. It is illustrated in
Tables 1, 2, 3, 4.

Theorem 8. Suppose that n ≥ 2 is a positive integer. If χn > c2, then

n <
2

π

∫ 1

0

√

χn − c2t2

1 − t2
dt. (99)

If χn < c2, then

n <
2

π

∫ T

0

√

χn − c2t2

1 − t2
dt, (100)

where T is the maximal root of ψ′
n in (−1, 1). Note that (99) and (100) differ only in the

range of integration on their right-hand sides.

Proof. Suppose that the real numbers

−1 ≤ −xn < t1 < x1 < t2 < · · · < tn−1 < xn−1 < tn < xn ≤ 1 (101)

are those of Definition 1 in Section 4.1.1, and the function θ : [−xn, xn] → R is that of
Lemma 2 above. Suppose also that the functions f, v are defined, respectively, via (43),
(44) in Section 2.4. If n is even, then we combine (75), (78), (79) in Lemma 2 with (94) in
Lemma 4 to obtain

n

2
· π =

∫ xn

xn/2

θ′(t) dt =

∫ xn

0
f(t) dt +

n−1
∑

i=n/2

∫ xi+1

xi

v(t) · sin(2θ(t)) dt

<

∫ xn

0
f(t) dt. (102)

If n is odd, then we combine (75), (78), (79) in Lemma 2 with (93), (94) in Lemma 4 to
obtain

n

2
· π =

∫ xn

t(n+1)/2

θ′(t) dt =

∫ xn

0
f(t) dt +

∫ x(n+1)/2

t(n+1)/2

v(t) · sin(2θ(t)) dt +
n−1
∑

i=(n+1)/2

∫ xi+1

xi

v(t) · sin(2θ(t)) dt

<

∫ xn

0
f(t) dt. (103)

We combine (102) and (103) with (61) in Lemma 1 to conclude both (99) and (100). ¥
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To prove Theorem 9, we need to develop a number of technical tools. In the following
two lemmas, we describe several properties of the equation f(t) = v(t) in the unknown t,
where f, v are defined, respectively, via (43), (44) in Section 2.4.

Lemma 5. Suppose that n ≥ 0 is a non-negative integer. Suppose also that the functions
f, v are defined, respectively, via (43), (44) in Section 2.4. Suppose furthermore that the
real number xn is that of Definition 1 in Section 4.1.1. Then, there exists a unique point t̂
in the interval (0, xn) such that

f(t̂) = v(t̂). (104)

Proof. We observe that, due to (43),(44) in Section 2.4,

v(t)

f(t)
> 0 (105)

for all 0 < t < xn. Moreover,

v(0)

f(0)
= 0, lim

t→xn. t<xn

v(t)

f(t)
= ∞. (106)

We combine (82) in the proof of Lemma 3 with (105) and (106) to conclude both existence
and uniqueness of the solution to the equation f(t) = v(t) in the unknown 0 < t < xn. ¥

Lemma 6. Suppose that n ≥ 2 is a positive integer. Suppose also that the real number xn

and the function θ : [−xn, xn] → R are those of Lemma 2 above. Suppose furthermore that
the point 0 < t̂ < xn is that of Lemma 5 above. Then,

(

n − 1

4

)

· π < θ(t̂) < n · π. (107)

Proof. Suppose that the point 0 < x < xn is defined via the formula

x = θ−1

((

n − 1

4

)

· π
)

, (108)

where θ−1 denotes the inverse of θ. By contradiction, suppose that (107) does not hold. In
other words,

0 < t̂ < x. (109)

It follows from the combination of Lemma 5, (82) in the proof of Lemma 3, and (109), that
f(x) < v(x). On the other hand, due to (75) in Lemma 2 and (108),

θ′(x) = f(x) + v(x) · sin(2θ(x))

= f(x) + v(x) · sin
(

2nπ − π

2

)

= f(x) − v(x) < 0, (110)

in contradiction to (81) in Lemma 3. ¥
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In the following three lemmas, we study some of the properties of the ratio f/v, where
f, v are defined, respectively, via (43), (44) in Section 2.4.

Lemma 7. Suppose that n ≥ 0 is a non-negative integer, and that the functions f, v are
defined, respectively, via (43), (44) in Section 2.4. Then, for all real 0 < t < 1,

− d

dt

(

f

v

)

(t) = ht(a) · f(t), (111)

where the real number a > 0 is defined via the formula

a =
χn

c2
, (112)

and, for all 0 < t < 1, the function ht : (0,∞) → R is defined via the formula

ht(a) =
4t6 + (2a − 6) · t4 + (4 − 8a) · t2 + 2a · (a + 1)

t2 · (1 + a − 2t2)2
. (113)

Moreover, for all real 0 < t < min {√a, 1},

− d

dt

(

f

v

)

(t) ≥ 3

2
· f(t). (114)

Proof. The identity (111) is obtained from (43), (44) via straightforward algebraic manip-
ulations. To establish (114), it suffices to show that, for a fixed 0 < t < 1,

inf
a

{

ht(a) : t2 < a < ∞
}

≥ 3

2
. (115)

We start with observing that, for all 0 < t < 1,

lim
a→t2, a>t2

ht(a) = 6, lim
a→∞

ht(a) =
2

t2
. (116)

Then, we differentiate ht(a), given via (113), with respect to a to obtain

dht

da
(a) =

2 · (1 − t2)

t2 · (1 + a − 2t2)3
·
(

6t4 + (a − 9) · t2 + a + 1
)

. (117)

It follows from (116), (117), that if t2 < ât < ∞ is a local extremum of ht(a), then

ât =
−6t4 + 9t2 − 1

t2 + 1
> t2, (118)

which is possible if and only if 1 > t2 > 1/7. Then we substitute ât, given via (118), into
(113) to obtain

h(t, ât) =
−t4 + 14t2 − 1

8t4
. (119)

It is trivial to verify that

inf
t

{

h(t, ât) :
1

7
< t < 1

}

= lim
t→1, t>1

h(t, ât) =
3

2
. (120)

Now (115) follows from the combination of (116), (118), (119) and (120). ¥
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Lemma 8. Suppose that n ≥ 2 is a positive integer, and that tn is the maximal zero of ψn

is the interval (−1, 1). Suppose also that the real number Z0 is defined via the formula

Z0 =
1

1 + 3π
8

≈ 0.4591. (121)

Then, for all 0 < t ≤ tn,

v(t) < f(t) · Z0, (122)

where the functions f, v are defined, respectively, via (43),(44) in Section 2.4.

Proof. Due to (82) in the proof of Lemma 3, the function f/v decreases monotonically in
the interval (0, tn), and therefore, to prove (122), it suffices to show that

f(tn)

v(tn)
>

1

Z0
= 1 +

3π

8
. (123)

Suppose that the point t̂ is that of Lemma 5. Suppose also that the real number xn and the
function θ : [−xn, xn] → R are those of Lemma 2. Suppose furthermore that the function
s : [0, n · π] → [−xn, xn] is the inverse of θ. In other words, for all 0 ≤ η ≤ n · π,

θ(s(η)) = η. (124)

We combine Lemma 2, Lemma 3, Lemma 5, Lemma 6 and Lemma 7 to obtain

f(tn)

v(tn)
− 1 =

(

−f

v

)

(t̂) −
(

−f

v

)

(tn) =

∫ t̂

tn

d

dt

(

−f

v

)

(t) dt =

∫ θ(t̂)

θ(tn)

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ (n−1/4)π

(n−1/2)π

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ (n−1/4)π

(n−1/2)π

d
dt

(

−f
v

)

(s(η)) dη

f(s(η))
>

π

4
· 3

2
=

3π

8
, (125)

which implies (123). ¥

Lemma 9. Suppose that n ≥ 2 and (n+1)/2 ≤ i ≤ n−1 are positive integers. Suppose also
that the real number xn and the function θ : [−xn, xn] → R are those of Lemma 2. Suppose
furthermore that 0 < δ < π/4 is a real number, and that the real number Zδ is defined via
the formula

Zδ =

[

1 +
3

2
·
(

π

4
+

δ

1 + Z0 · sin(2δ)

)]−1

, (126)

where Z0 is defined via (121) in Lemma 8 above. Then,

v(t) < f(t) · Zδ, (127)

for all 0 < t ≤ s ((i + 1/2) · π − δ), where the functions f, v are defined, respectively, via
(43), (44) in Section 2.4, and the function s : [0, n · π] → [−xn, xn] is the inverse of θ.
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Proof. Suppose that the point tδ is defined via the formula

tδ = s ((i + 1/2) · π − δ) . (128)

Due to (82) in the proof of Lemma 3, the function f/v decreases monotonically in the
interval (0, tδ), and therefore to prove (127) it suffices to show that

f(tδ)

v(tδ)
>

1

Zδ
= 1 +

3

2
·
(

π

4
+

δ

1 + Z0 · sin(2δ)

)

. (129)

We observe that, due to Lemma 3,

0 ≤ sin(2θ(t)) ≤ sin(2δ), (130)

for all tδ ≤ t ≤ s((i+1/2)π). We combine (128), (130) with Lemma 2, Lemma 3, Lemma 6,
Lemma 7 and Lemma 8 to obtain

f(tδ)

v(tδ)
− f(s((i + 1/2)π))

v(s((i + 1/2)π))
=

∫ s((i+1/2)π)

tδ

d

dt

(

−f

v

)

(t) dt =

∫ (i−1/2)π

(i−1/2)π−δ

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ (i−1/2)π

(i−1/2)π−δ

d
dt

(

−f
v

)

(s(η))

f(s(η))
· dη

1 + (v/f)(s(η)) · sin(2δ)
>

3

2
· δ · 1

1 + Z0 · sin(2δ)
. (131)

We combine (131) with (122) in Lemma 8 to obtain (129), which, in turn, implies (127). ¥

In the following two lemmas, we estimate the rate of decay of the ratio f/v and its
relationship with θ of the ODE (75) in Lemma 2.

Lemma 10. Suppose that n ≥ 2 and (n + 1)/2 ≤ i ≤ n − 1 are positive integers. Suppose
also that the real number xn and the function θ : [−xn, xn] → R are those of Lemma 2.
Suppose furthermore that 0 < δ < π/4 is a real number. Then,

(

f

v

)

(s(iπ − δ)) −
(

f

v

)

(s(iπ − δ + π/2)) > 2 · sin(2δ), (132)

where the functions f, v are defined, respectively, via (43), (44) in Section 2.4, and the
function s : [0, n · π] → [−xn, xn] is the inverse of θ.

Proof. We observe that, due to Lemma 2 and Lemma 3,

sin(2θ(t)) > 0, (133)
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for all s(iπ) < t < s(iπ − δ + π/2). We combine (133) with Lemma 2, Lemma 3, Lemma 6,
Lemma 7 and Lemma 9 to obtain

f(s(iπ))

v(s(iπ))
− f(s(iπ − δ + π/2))

v(s(iπ − δ + π/2))
=

∫ s(iπ−δ+π/2)

s(iπ)

d

dt

(

−f

v

)

(t) dt =

∫ iπ−δ+π/2

iπ

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ iπ−δ+π/2

iπ

d
dt

(

−f
v

)

(s(η))

f(s(η))
· dη

1 + (v/f)(s(η))
>

3

2
·
(π

2
− δ

)

· 1

1 + Zδ
, (134)

where Zδ is defined via (126) in Lemma 9. We also observe that, due to Lemma 2 and
Lemma 3,

sin(2θ(t)) < 0, (135)

for all s(iπ − δ) < t < s(iπ). We combine (135) with Lemma 2, Lemma 3, Lemma 6 and
Lemma 7 to obtain

f(s(iπ − δ))

v(s(iπ − δ))
− f(s(iπ))

v(s(iπ))
=

∫ s(iπ)

s(iπ−δ)

d

dt

(

−f

v

)

(t) dt =

∫ iπ

iπ−δ

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ iπ

iπ−δ

d
dt

(

−f
v

)

(s(η)) dη

f(s(η))
>

3

2
· δ. (136)

Next, suppose that the function h : [0, π/4] → R is defined via the formula

h(δ) =
3

2
·
(π

2
− δ

)

· 1

1 + Zδ
+

3

2
· δ − 2 · sin(2δ), (137)

where Zδ is defined via (126) in Lemma 9. One can easily verify that

min
δ

{h(δ) : 0 ≤ δ ≤ π/4} >
1

25
, (138)

and, in particular, that h(δ) > 0 for all 0 ≤ δ ≤ π/4. We combine (134), (136), (137) and
(138) to obtain (132). ¥

Lemma 11. Suppose that n ≥ 2 and (n + 1)/2 ≤ i ≤ n − 1 are positive integers. Suppose
also that the real number xn and the function θ : [−xn, xn] → R are those of Lemma 2.
Suppose furthermore that 0 < δ < π/4 is a real number. Then,

(

f

v

)

(s(iπ + δ − π/2)) −
(

f

v

)

(s(iπ + δ)) > 2 · sin(2δ), (139)

where the functions f, v are defined, respectively, via (43), (44) in Section 2.4, and the
function s : [0, n · π] → [−xn, xn] is the inverse of θ.
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Proof. We observe that, due to Lemma 2 and Lemma 3,

sin(2θ(t)) > 0, (140)

for all s(iπ) < t < s(iπ + δ). We combine (140) with Lemma 2, Lemma 3, Lemma 6,
Lemma 7 and Lemma 9 to obtain

f(s(iπ))

v(s(iπ))
− f(s(iπ + δ))

v(s(iπ + δ))
=

∫ s(iπ+δ)

s(iπ)

d

dt

(

−f

v

)

(t) dt =

∫ iπ+δ

iπ

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ iπ+δ

iπ

d
dt

(

−f
v

)

(s(η))

f(s(η))
· dη

1 + (v/f)(s(η))
>

3

2
· δ

1 + Zδ
, (141)

where Zδ is defined via (126) in Lemma 9. We also observe that, due to Lemma 2 and
Lemma 3,

sin(2θ(t)) < 0, (142)

for all s(iπ + δ − π/2) < t < s(iπ). We combine (142) with Lemma 2, Lemma 3, Lemma 6
and Lemma 7 to obtain

f(s(iπ + δ − π/2))

v(s(iπ + δ − π/2))
− f(s(iπ))

v(s(iπ))
=

∫ s(iπ)

s(iπ+δ−π/2)

d

dt

(

−f

v

)

(t) dt =

∫ iπ

iπ+δ−π/2

d
dt

(

−f
v

)

(s(η)) dη

f(s(η)) + v(s(η)) · sin(2η)
>

∫ iπ

iπ+δ−π/2

d
dt

(

−f
v

)

(s(η)) dη

f(s(η))
>

3

2
·
(π

2
− δ

)

. (143)

Obviously, for all 0 < δ < π/4,

3

2
· δ

1 + Zδ
+

3

2
·
(π

2
− δ

)

>
3

2
·
(π

2
− δ

)

· 1

1 + Zδ
+

3

2
· δ. (144)

We combine (141),(143), (144) with (137), (138) in the proof of Lemma 10 to obtain (139).
¥

In the following lemma, we analyze the integral of the oscillatory part of the right-hand
side of the ODE (75) between consecutive roots of ψn. This lemma can be viewed as an
extention of Lemma 4, and is used in the proof of Theorem 9 below.

Lemma 12. Suppose that n ≥ 2 is an integer, −1 < t1 < t2 < · · · < tn < 1 are the roots of
ψn in the interval (−1, 1), and x1 < · · · < xn−1 are the roots of ψ′

n in the interval (t1, tn).
Suppose also, that the real number xn and the function θ : [−xn, xn] → R are those of
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Lemma 2 above. Suppose furthermore that the function v is defined via (44) in Section 2.4.
Then,

∫ ti+1

ti

v(t) · sin(2θ(t)) dt > 0, (145)

for all integer (n + 1)/2 ≤ i ≤ n − 1, i.e. for all integer i such that 0 ≤ ti < tn.

Proof. Suppose that i is a positive integer such that (n−1)/2 ≤ i ≤ n−1. Suppose also that
the function s : [0, n · π] → [−xn, xn] is the inverse of θ. In other words, for all 0 ≤ η ≤ n ·π,

θ(s(η)) = η. (146)

Due to (97) in the proof of Lemma 4 above,

∫ xi

ti

v(t) · sin(2θ(t)) dt =

−
∫ π/2

0

v(s(iπ + η − π/2)) · sin(2η) dη

f(s(iπ + η − π/2)) − v(s(iπ + η − π/2)) · sin(2η)
. (147)

We proceed to compare the integrand in (147) to the integrand in (96) in the proof of
Lemma 4. First, for all 0 < η < π/4,

1

(f/v)(s(iπ + η − π/2)) − sin(2η)
<

1

(f/v)(s(iπ + η)) + sin(2η)
, (148)

due to (139) in Lemma 11. Moreover, for all π/4 < η < π/2, we substitute δ = π/2 − η to
obtain

1

(f/v)(s(iπ + η − π/2)) − sin(2η)
=

1

(f/v)(s(iπ − δ)) − sin(2δ)
<

1

(f/v)(s(iπ − δ + π/2)) + sin(2δ)
=

1

(f/v)(s(iπ + η)) + sin(2η)
, (149)

due to (132) in Lemma 10. We combine (96) in the proof of Lemma 4 with (147), (148),
(149) to obtain (145). ¥

The following theorem is a counterpart of Theorem 8 above. It is illustrated in Tables 1,
2, 3, 4.

Theorem 9. Suppose that n ≥ 2 is a positive integer. Suppose also that tn is the maximal
root of ψn in (−1, 1). Then,

1 +
2

π

∫ tn

0

√

χn − c2t2

1 − t2
dt < n. (150)
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Proof. Suppose that the real numbers

−1 ≤ −xn < t1 < x1 < t2 < · · · < tn−1 < xn−1 < tn < xn ≤ 1 (151)

and the function θ : [−xn, xn] → R are those of Lemma 2 above. Suppose also that the
functions f, v are defined, respectively, via (43),(44) in Section 2.4. If n is odd, then we
combine (75), (78), in Lemma 2 with (145) in Lemma 12 to obtain

n − 1

2
· π =

∫ tn

t(n+1)/2

θ′(t) dt =

∫ tn

0
f(t) dt +

n−1
∑

i=(n+1)/2

∫ ti+1

ti

v(t) · sin(2θ(t)) dt

>

∫ tn

0
f(t) dt. (152)

If n is even, then we combine (75), (78), (79) in Lemma 2 with (92) in Lemma 4 and (145)
in Lemma 12 to obtain

n − 1

2
· π =

∫ tn

xn/2

θ′(t) dt =

∫ tn

0
f(t) dt +

∫ t(n/2)+1

xn/2

v(t) · sin(2θ(t)) dt +
n−1
∑

i=(n/2)+1

∫ ti+1

ti

v(t) · sin(2θ(t)) dt

>

∫ tn

0
f(t) dt. (153)

We combine (152) and (153) to conclude (150). ¥

Corollary 2. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also that
tn is the maximal root of ψn in the interval (−1, 1). Then,

1 +
2

π

√
χn · E

(

asin (tn) ,
c√
χn

)

< n <
2

π

√
χn · E

(

c√
χn

)

, (154)

where E(y, k) and E(k) are defined, respectively, via (18) and (22) in Section 2.2.

Proof. It follows immediately from (20), (99) in Theorem 8 and (150) in Theorem 9. ¥

The following theorem, illustrated in Tables 7, 8, provides upper and lower bounds on
the distance between consecutive roots of ψn inside (−1, 1).

Theorem 10. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also that
−1 < t1 < t2 < · · · < tn < 1 are the roots of ψn in the interval (−1, 1). Suppose furthermore
that the functions f, v are defined, respectively, via (43),(44) in Section 2.4. Then,

π

f(ti+1) + v(ti+1)/2
< ti+1 − ti <

π

f(ti)
, (155)

for all integer (n + 1)/2 ≤ i ≤ n − 1, i.e. for all integer i such that 0 ≤ ti < tn.
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Proof. Suppose that the function θ : [−1, 1] → R is that of Lemma 2. We observe that f is
increasing in (0, 1) due to (43) in Section 2.4, and combine this observation with (75), (78),
in Lemma 2 and (145) in Lemma 12 to obtain

π =

∫ ti+1

ti

θ′(t) dt =

∫ ti+1

ti

f(t) dt +

∫ ti+1

ti

v(t) · sin(2θ(t)) dt

>

∫ ti+1

ti

f(t) dt > (ti+1 − ti) · f(ti), (156)

which implies the right-hand side of (155). As in Lemma 2, suppose that xi is the zero
of ψ′

n in the interval (ti, ti+1). We combine (75), (78), (78) in Lemma 2 and (92), (93) in
Lemma 4 to obtain

∫ xi

ti

f(t) dt >

∫ xi

ti

θ′(t) dt = π =

∫ ti+1

xi

θ′(t) dt >

∫ ti+1

xi

f(t) dt. (157)

Since f is increasing in (ti, ti+1) due to (43) in Section 2.4, the inequality (157) implies that

xi − ti > ti+1 − xi. (158)

Moreover, we observe that v is also increasing in (0, 1). We combine this observation with
(158), (75), (78), in Lemma 2 and (92), (93) in Lemma 4 to obtain

π =

∫ ti+1

ti

θ′(t) dt <

∫ ti+1

ti

f(t) dt +

∫ ti+1

xi

v(t) · sin(2θ(t)) dt

< (ti+1 − ti) · f(ti+1) + (ti+1 − xi) · v(ti+1)

< (ti+1 − ti) · f(ti+1) +
ti+1 − ti

2
· v(ti+1), (159)

which implies the left-hand side of (155). ¥

The following theorem is a direct consequence of Theorem 8 above.

Theorem 11. Suppose that n ≥ 2 is a positive integer. If n ≥ 2c/π, then χn > c2.

Proof. Suppose that χn < c2, and T is the maximal root of ψ′
n in (0, 1), as in Theorem 8

above. Then,

n <
2

π

∫ T

0

√

χn − c2t2

1 − t2
dt =

2c

π

∫ T

0

√

χn/c2 − t2

1 − t2
dt <

2c

π
· T <

2c

π
, (160)

due to (100) in Theorem 8. ¥

4.1.3 Elimination of the First-Order Term of the Prolate ODE

In this subsection, we analyze the oscillation properties of ψn via transforming the ODE
(14) into a second-order linear ODE without the first-order term. The following lemma is
the principal technical tool of this subsection.
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Lemma 13. Suppose that n ≥ 0 is a non-negative integer. Suppose also that that the
functions Ψn, Qn : (−1, 1) → R are defined, respectively, via the formulae

Ψn(t) = ψn(t) ·
√

1 − t2 (161)

and

Qn(t) =
χn − c2 · t2

1 − t2
+

1

(1 − t2)2
, (162)

for −1 < t < 1. Then,

Ψ′′
n(t) + Qn(t) · Ψn(t) = 0, (163)

for all −1 < t < 1.

Proof. We differentiate Ψn with respect to t to obtain

Ψ′
n(t) = ψ′

n(t)
√

1 − t2 − ψn(t) · t√
1 − t2

. (164)

Then, using (164), we differentiate Ψ′
n with respect to t to obtain

Ψ′′
n(t) = ψ′′

n(t)
√

1 − t2 − ψ′
n(t) · 2t√

t2 − 1
− ψn(t) ·

√
1 − t2 + t2/

√
1 − t2

1 − t2

= ψ′′
n(t)

√

1 − t2 − ψ′
n(t) · 2t√

1 − t2
− ψn(t)

(

1 − t2
)− 3

2

=
1√

1 − t2

[

(

1 − t2
)

· ψ′′
n(t) − 2t · ψ′

n(t) − ψn(t)

1 − t2

]

=
1√

1 − t2

[

−ψn(t) ·
(

χn − c2 · t2
)

− ψn(t)

1 − t2

]

= −Ψn(t) ·
(

χn − c2 · t2
1 − t2

+
1

(t2 − 1)2

)

. (165)

We observe that (163) follows from (165). ¥

In the next theorem, we provide an upper bound on χn in terms of n. The results of
the corresponding numerical experiments are reported in Tables 5, 6.

Theorem 12. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Then,

χn <
(π

2
(n + 1)

)2
. (166)

Proof. Suppose that the functions Ψn, Qn : (−1, 1) → R are those of Lemma 13 above. We
observe that, since χn > c2,

Qn(t) > χn + 1, (167)
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for −1 < t < 1. Suppose now that tn is the maximal root of ψn in (−1, 1). We combine
(167) with (163) in Lemma 13 above and Theorem 7, Corollary 1 in Section 2.3 to obtain
the inequality

tn ≥ 1 − π√
χn + 1

. (168)

Then, we combine (168) with Theorem 9 above to obtain

n > 1 +
2

π

∫ tn

0

√

χn − c2t2

1 − t2
dt

> 1 +
2 · tn

π

√
χn ≥ 1 +

2

π

√
χn

(

1 − π√
χn + 1

)

>
2

π

√
χn − 1, (169)

which implies (166). ¥

The following theorem is a consequence of the proof of Theorem 12.

Theorem 13. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also
that t1 < · · · < tn are the roots of ψn in (−1, 1). Then,

tj+1 − tj <
π√

χn + 1
, (170)

for all j = 1, 2, . . . , n − 1.

Proof. The inequality (170) follows from the combination of (167) in the proof of Theo-
rem 12, (163) in Lemma 13 and Theorem 7, Corollary 1 in Section 2.3. ¥

The following theorem extends Theorem 11 in Section 4.1.2.

Theorem 14. Suppose that n ≥ 2 is a positive integer.

• If n ≤ (2c/π) − 1, then χn < c2.

• If n ≥ (2c/π), then χn > c2.

• If (2c/π) − 1 < n < (2c/π), then either inequality is possible.

Proof. Suppose that χn > c2, and that the functions Ψn, Qn : (−1, 1) → R are those of
Lemma 13 above. Suppose also that t1 < · · · < tn are the roots of ψn in (−1, 1). We
observe that, due to (162) in Lemma 13,

Qn(t) = c2 +
χn − c2

1 − t2
+

1

(1 − t2)2
> c2. (171)

We combine (171) with (163) in Lemma 13 above and Theorem 5 in Section 2.3 to conclude
that

tj+1 − tj <
π

c
, (172)
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for all j = 1, . . . , n − 1, and, moreover,

1 − tn <
π

c
. (173)

We combine (172) with (173) to obtain the inequality

2
(

1 − π

c

)

< 2tn = tn − t1 < (n − 1)
π

c
, (174)

which implies that

n >
2

π
c − 1. (175)

We conclude the proof by combining Theorem 11 in Section 4.1.2 with (175). ¥

The following theorem is yet another application of Lemma 13 above.

Theorem 15. Suppose that n ≥ 2 is a positive integer. Suppose also that −1 < t1 < t2 <
· · · < tn < 1 are the roots of ψn in the interval (−1, 1). Suppose furthermore that i is an
integer such that 0 ≤ ti < tn, i.e. (n + 1)/2 ≤ i ≤ n − 1. If χn > c2, then

ti+1 − ti > ti+2 − ti+1 > · · · > tn − tn−1. (176)

If χn < c2 − c
√

2, then

ti+1 − ti < ti+2 − ti+1 < · · · < tn − tn−1. (177)

Proof. Suppose that the functions Ψn, Qn : (−1, 1) → R are those of Lemma 13 above. If
χn > c2, then, due to (162) in Lemma 13,

Qn(t) = c2 +
χn − c2

1 − t2
+

1

(1 − t2)2
(178)

is obviously a monotonically increasing function. We combine this observation with (163)
of Lemma 13 and (28) of Theorem 6 in Section 2.3 to conclude (176).

Suppose now that

χn < c2 − c
√

2. (179)

Suppose also that the function Pn : (1,∞) → R is defined via the formula

Pn(y) = Qn

(√

1 − 1√
y

)

= y2 + (χn − c2) · y + c2, (180)

for 1 < y < ∞. Obviously,

Qn(t) = Pn

(

1

1 − t2

)

. (181)
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Suppose also that y0 is defined via the formula

y0 =
1

1 − (
√

χn/c)2
=

c2

c2 − χn
. (182)

We combine (179), (180) and (182) to conclude that, for 1 < y < y0,

P ′
n(y) = 2y − (c2 − χn) < 2y0 − (c2 − χn) =

2c2 − (c2 − χn)2

c2 − χn
< 0. (183)

Moreover, due to (180), (182), (183),

Pn(y) > Pn(y0) =

(

c2

χn − c2

)2

> 0, (184)

for all 1 < y < y0. We combine (180), (181), (182), (183) and (184) to conclude that Qn is
monotonically decreasing and strictly positive in the interval (0,

√
χn/c). We combine this

observation with (29) of Theorem 6 in Section 2.3, (63) of Lemma 1, and (163) of Lemma 13
to conclude (177). ¥

Remark 2. Numerical experiments confirm that there exist real c > 0 and integer n > 0
such that c2 − c

√
2 < χn < c2 and neither of (176), (177) is true.

In the following theorem, we provide an upper bound on 1− tn, where tn is the maximal
root of ψn in the interval (−1, 1).

Theorem 16. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also
that tn is the maximal root of ψn in the interval (−1, 1). Then,

c2 · (1 − tn)2 +
χn − c2

1 + tn
· (1 − tn) < π2. (185)

Moreover,

1 − tn <
4π2

χn − c2 +
√

(χn − c2)2 + (4πc)2
. (186)

Proof. Suppose that the functions Ψn, Qn : (−1, 1) → R are those of Lemma 13 above.
Since χn > c2, the function Qn is monotonically increasing, i.e.

Qn(tn) ≤ Q(t), (187)

for all tn ≤ t < 1. We consider the solution ϕn of the ODE

ϕ′′
n(t) + Qn(tn) · ϕn(t) = 0, (188)

with the initial conditions

ϕ(tn) = Ψn(tn) = 0, ϕ′(tn) = Ψ′
n(tn). (189)
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The function ϕn has a root yn given via the formula

yn = tn +
π

√

Qn(tn)
. (190)

Suppose, by contradiction, that yn ≤ 1. Then, due to the combination of (163) of Lemma 13,
Theorem 7, Corollary 1 in Section 2.3, and (187) above, Ψn has a root in the interval (tn, yn),
in contradiction to (161). Therefore,

tn +
π

√

Qn(tn)
> 1. (191)

We rewrite (191) as

(1 − tn)2 · Qn(tn) < π2, (192)

and plug (162) into (192) to obtain the inequality

c2 · (1 − tn)2 +
χn − c2

1 + tn
· (1 − tn) +

1

(1 + tn)2
< π2, (193)

which immediately yields (185). Since 1−tn is positive, (193) implies that 1−tn is bounded
from above by the maximal root xmax of the quadratic equation

c2 · x2 +
χn − c2

2
· x − π2 = 0, (194)

given via the formula

xmax =
1

4c2
·
(

√

(χn − c2)2 + 16π2c2 − (χn − c2)
)

=
16π2c2

4c2
· 1

χn − c2 +
√

(χn − c2)2 + 16π2c2
, (195)

which implies (186). ¥

The following theorem uses Theorem 16 to simplify the inequalities (99) in Theorem 8
and (150) in Theorem 9 in Section 4.1.2.

Theorem 17. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also
that tn is the maximal root of ψn in the interval (−1, 1). Then,

2

π

∫ 1

tn

√

χn − c2t2

1 − t2
dt < 4. (196)

Moreover,

n <
2

π

∫ 1

0

√

χn − c2t2

1 − t2
dt < n + 3. (197)
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Proof. We observe that, for tn ≤ t < 1,

χn − c2t2

1 + t
<

χn − c2t2n
1 + tn

=
χn − c2

1 + tn
+

c2 − ctt2n
1 + tn

= c2(1 − tn) +
χn − c2

1 + tn
. (198)

We combine (198) with (185) in Theorem 16 to obtain the inequality

χn − c2t2

1 + t
<

π2

1 − tn
, (199)

valid for tn ≤ t < 1. We conclude from (199) that

∫ 1

tn

√

χn − c2t2

1 − t2
dt <

π√
1 − tn

·
∫ 1

tn

dt√
1 − t

=
π√

1 − tn
· 2
√

1 − tn = 2π, (200)

which implies (196). The inequality (197) follows from the combination of (196), (99) in
Theorem 8 and (150) in Theorem 9 in Section 4.1.2. ¥

Corollary 3. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Then,

n <
2

π

√
χn · E

(

c√
χn

)

< n + 3, (201)

where E(k) is defined via (22) in Section 2.2.

Proof. The inequality (201) follows immediately from the combination of (22) in Section 2.2
and (197) in Theorem 17 above. ¥

The following theorem extends Theorem 16 above by providing a lower bound on 1− tn,
where tn is the maximal root of ψn in the interval (−1, 1).

Theorem 18. Suppose that n ≥ 2 is a positive integer, and that χn > c2. Suppose also
that tn is the maximal root of ψn in the interval (−1, 1). Then,

π2/8

χn − c2 +
√

(χn − c2)2 + (πc/2)2
< 1 − tn. (202)

Proof. We combine the inequalities (99) in Theorem 8 and (150) in Theorem 9 in Sec-
tion 4.1.2 to conclude that

1 <
2

π

∫ 1

tn

√

χn − c2t2

1 − t2
dt. (203)

We combine (203) with (198) in the proof of Theorem 17 above to obtain

1 <
2

π

√

χn − c2

1 + tn
+ c2(1 − tn) ·

∫ 1

tn

dt√
1 − t

<
4

π

√

c2(1 − tn)2 + (χn − c2) · (1 − tn). (204)
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We rewrite (204) as

c2(1 − tn)2 + (χn − c2) · (1 − tn) − π2

16
> 0. (205)

Since 1− tn is positive, (205) implies that 1− tn it is bounded from below by the maximal
root xmax of the quadratic equation

c2 · x2 +
χn − c2

2
· x − π2

16
= 0, (206)

given via the formula

xmax =
1

2c2
·
(

√

(χn − c2)2 + π2c2/4 − (χn − c2)
)

=
π2c2

8c2
· 1

χn − c2 +
√

(χn − c2)2 + π2c2/4
, (207)

which implies (202). ¥

4.2 Growth Properties of PSWFs

In this subsection, we establish several bounds on |ψn| and |ψ′
n|. Throughout this sub-

section c > 0 is a fixed positive real number. The principal results of this subsection are
Theorems 19, 20, 21. The following lemma is a technical tool to be used in the rest of this
subsection.

Lemma 14. Suppose that n ≥ 0 is a non-negative integer, and that the functions p, q : R →
R are defined via (39) in Section 2.4. Suppose also that the functions Q, Q̃ : (0,min

{√
χn/c, 1

}

) →
R are defined, respectively, via the formulae

Q(t) = ψ2
n(t) +

p(t)

q(t)
·
(

ψ′
n(t)

)2
= ψ2

n(t) +

(

1 − t2
)

· (ψ′
n(t))2

χn − c2t2
(208)

and

Q̃(t) = p(t) · q(t) · Q(t)

=
(

1 − t2
)

·
(

(

χn − c2t2
)

· ψ2
n(t) +

(

1 − t2
)

·
(

ψ′
n(t)

)2
)

. (209)

Then, Q is increasing in the interval
(

0, min
{√

χn/c, 1
})

, and Q̃ is decreasing in the interval
(

0, min
{√

χn/c, 1
})

.

Proof. We differentiate Q, defined via (208), with respect to t to obtain

Q′(t) = 2 · ψn(t) · ψ′
n(t) +

(

2c2t · (1 − t2)

(χn − c2t2)2
− 2t

χn − c2t2

)

·
(

ψ′
n(t)

)2
+

2 · (1 − t2)

χn − c2t2
· ψ′

n(t) · ψ′′
n(t). (210)
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Due to (14) in Section 2.1,

ψ′′
n(t) =

2t

1 − t2
· ψ′

n(t) − χn − c2t2

1 − t2
· ψn(t), (211)

for all −1 < t < 1. We substitute (211) into (210) and carry out straightforward algebraic
manipulations to obtain

Q′(t) =
2t

(χn − c2t2)2
·
(

χn + c2 − 2c2t2
)

·
(

ψ′
n(t)

)2
. (212)

Obviously, for all 0 < t < min
{√

χn/c, 1
}

,

χn + c2 − 2c2t2 > 0. (213)

We combine (212) with (213) to conclude that

Q′(t) > 0, (214)

for all 0 < t < min
{√

χn/c, 1
}

. Then, we differentiate Q̃, defined via (209), with respect to
t to obtain

Q̃′(t) = − 2t ·
(

(χn − c2t2) · ψ2
n(t) + (1 − t2) ·

(

ψ′
n(t)

)2
)

+ (1 − t2) ·
(

−2c2t · ψ2
n(t) + 2 · (χn − c2t2) · ψn(t) · ψ′

n(t)

−2t ·
(

ψ′
n(t)

)2
+ 2 · (1 − t2) · ψ′

n(t) · ψ′′
n(t)

)

. (215)

We substitute (211) into (215) and carry out straightforward algebraic manipulations to
obtain

Q̃′(t) = −2t · (χn + c2 − 2c2t2) · ψ2
n(t). (216)

We combine (213) with (216) to conclude that

Q̃′(t) < 0, (217)

for all 0 < t < min
{√

χn/c, 1
}

. We combine (214) and (217) to finish the proof. ¥

In the following theorem, we establish a lower bound on |ψn(1)|.
Theorem 19 (bound on |ψn(1)|). Suppose that χn > c2. Then,

|ψn(1)| >
1√
2
. (218)

Proof. The function Q(t) defined by (208) is increasing in (0, 1) by Lemma 14 and continuous
up to t = 1 by Theorem 3 in Section 2.1. Therefore

ψ2
n(t) < Q(t) ≤ Q(1) = ψ2

n(1), 0 ≤ t < 1. (219)

By Theorem 1 in Section 2.1,

1

2
=

∫ 1

0
ψ2

n(t) dt <

∫ 1

0
ψ2

n(1) dt = ψ2
n(1), (220)

which implies (218). ¥

35



The following theorem describes some of the properties of the extrema of ψn in (−1, 1).

Theorem 20. Suppose that n ≥ 0 is a non-negative integer, and that x, y are two arbitrary
extremum points of ψn in (−1, 1). If |x| < |y|, then

|ψn(x)| < |ψn(y)| . (221)

If, in addition, χn > c2, then

|ψn(x)| < |ψn(y)| < |ψn(1)| . (222)

Proof. We observe that |ψn| is even in (−1, 1), and combine this observation with the
fact that the function Q : [−1, 1] → R, defined via (208), is increasing in (0, 1) due to
Lemma 14. ¥

In the following theorem, we provide an upper bound on the reciprocal of |ψn| (if n is
even) or |ψ′

n| (if n is odd) at zero.

Theorem 21. Suppose that χn > c2. If n is even, then

1

|ψn(0)| ≤ 4 ·
√

n · χn

c2
. (223)

If n is odd, then

1

|ψ′
n(0)| ≤ 4 ·

√

n

c2
. (224)

Proof. Since χn > c2, the inequality

ψ2
n(t) ≤ ψ2

n(1) ≤ n +
1

2
, (225)

holds due to Theorem 4 in Section 2.1 and Theorem 20 above. Therefore,

∫ 1

1−1/8n
ψ2

n(t) dt ≤ 1

8
+

1

16n
<

3

16
. (226)

Combined with the orthonormality of ψn, this yields the inequality

∫ 1−1/8n

0
ψ2

n(t) dt =

∫ 1

0
ψ2

n(t) dt −
∫ 1

1−1/8n
ψ2

n(t) dt ≥ 1

2
− 3

16
=

5

16
. (227)

Since
∫

dx

(1 − x2)2
=

1

2
· x

1 − x2
+

1

4
log

x + 1

1 − x
, (228)
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it follows that

∫ 1−1/8n

0

dx

(1 − x2)2
=

1

2
· 1 − 1/8n

1 − (1 − 1/8n)2
+

1

4
log

2 − 1/8n

1/8n
=

1

2
· 8n (8n − 1)

16n − 1
+

1

4
log (16n − 1) ≤

4n + n ≤ 5n. (229)

Suppose that the functions Q(t), Q̃(t) are defined for −1 ≤ t ≤ 1, respectively, via the
formulae (208), (209) in Lemma 14 in Section 4.2. We apply Lemma 14 with t0 = 0 and
0 < t ≤ 1 to obtain

Q(0) · χn = Q(0) · p(0) · q(0) = Q̃(0)

≥ Q̃(t) = c2

[

ψ2
n(t) +

(

t2 − 1
)

(ψ′
n(t))2

(c2 · t2 − χn)

]

·
(

1 − t2
) (

χn/c2 − t2
)

≥ c2ψ2
n(t)

(

1 − t2
) (

χn/c2 − t2
)

≥ c2ψ2
n(t)

(

1 − t2
)2

. (230)

It follows from (227), (229) and (230) that

5n · Q(0) · χn

c2
≥ Q(0) · χn

c2

∫ 1−1/8n

0

dx

(1 − x2)2
≥

∫ 1−1/8n

0
ψ2

n(t) dt ≥ 5

16
, (231)

which, in turn, implies that

1

Q(0)
≤ 16n · χn

c2
. (232)

If n is even, then ψ′
n(0) = 0, also, if n is odd, then ψn(0) = 0. Combined with (232), this

observation yields both (223) and (224). ¥

5 Numerical Results

In this section, we illustrate the analysis of Section 4 via several numerical experiments.
All the calculations were implemented in FORTRAN (the Lahey 95 LINUX version) and
were carried out in double precision. The algorithms for the evaluation of PSWFs and their
eigenvalues were based on [4].

We illustrate Lemma 1 in Figures 1, 2, via plotting ψn with χn < c2 and χn > c2,
respectively. The relations (63) and (64) hold for the functions in Figures 1, 2, respectively.
Theorem 20 holds in both cases, that is, the absolute value of local extrema of ψn(t) increases
as t grows from 0 to 1. On the other hand, (222) holds only for the function plotted in
Figure 2, as expected.

Tables 1, 2, 3 illustrate Theorems 8, 9 in the case χn > c2. The band limit c > 0 is fixed
per table and chosen to be equal to 10, 100 and 1000, respectively. The first two columns
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Figure 1: The function ψn(t) for c = 20 and n = 9. Since χn ≈ 325.42 < c2, the location of
the special points is according to (63) of Lemma 1. The points

√
χn/c ≈ 0.90197 and 1 are

marked with asterisks. Compare to Figure 2.

n χn/c2 Above(n) Below(n) Above(n)−n
n

n−Below(n)
n

6 0.10104E+01 0.65036E+01 0.59568E+01 0.83927E-01 0.71987E-02
10 0.16310E+01 0.10498E+02 0.99600E+01 0.49826E-01 0.39974E-02
15 0.29137E+01 0.15494E+02 0.14963E+02 0.32940E-01 0.24599E-02
20 0.47078E+01 0.20495E+02 0.19964E+02 0.24737E-01 0.17952E-02
25 0.70050E+01 0.25496E+02 0.24965E+02 0.19820E-01 0.14066E-02
30 0.98035E+01 0.30496E+02 0.29965E+02 0.16538E-01 0.11533E-02
35 0.13103E+02 0.35497E+02 0.34966E+02 0.14189E-01 0.97596E-03
40 0.16902E+02 0.40497E+02 0.39966E+02 0.12425E-01 0.84521E-03
45 0.21202E+02 0.45497E+02 0.44966E+02 0.11052E-01 0.74500E-03

Table 1: Illustration of Theorems 8, 9 with c = 10. The quantities Above(n) and Below(n)
are defined by (233).

38



0.6 0.7 0.8 0.9 1 1.1
−2

0

2

4

6

8

ψ
n
(t)

Figure 2: The function ψn(t) for c = 20 and n = 14. Since χn ≈ 437.36 > c2, the location
of the special points is according to (64) of Lemma 1. The points 1 and

√
χn/c ≈ 1.0457

are marked with asterisks. Compare to Figure 1.

n χn/c2 Above(n) Below(n) Above(n)−n
n

n−Below(n)
n

64 0.10066E+01 0.64590E+02 0.63964E+02 0.92169E-02 0.56216E-03
70 0.10668E+01 0.70513E+02 0.69971E+02 0.73216E-02 0.40732E-03
75 0.11290E+01 0.75505E+02 0.74971E+02 0.67341E-02 0.38256E-03
80 0.11989E+01 0.80502E+02 0.79970E+02 0.62812E-02 0.37011E-03
85 0.12756E+01 0.85501E+02 0.84970E+02 0.58974E-02 0.35594E-03
90 0.13584E+01 0.90501E+02 0.89969E+02 0.55623E-02 0.34087E-03
95 0.14472E+01 0.95500E+02 0.94969E+02 0.52652E-02 0.32589E-03
100 0.15416E+01 0.10050E+03 0.99969E+02 0.49994E-02 0.31150E-03

Table 2: Illustration of Theorems 8, 9 with c = 100. The quantities Above(n) and Below(n)
are defined by (233).
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n χn/c2 Above(n) Below(n) Above(n)−n
n

n−Below(n)
n

637 0.10005E+01 0.63759E+03 0.63697E+03 0.93059E-03 0.51797E-04
640 0.10025E+01 0.64055E+03 0.63997E+03 0.85557E-03 0.49251E-04
645 0.10063E+01 0.64552E+03 0.64497E+03 0.80101E-03 0.39996E-04
650 0.10105E+01 0.65051E+03 0.64997E+03 0.78412E-03 0.39578E-04
655 0.10149E+01 0.65551E+03 0.65497E+03 0.77352E-03 0.40527E-04
660 0.10195E+01 0.66050E+03 0.65997E+03 0.76512E-03 0.41359E-04
665 0.10243E+01 0.66550E+03 0.66497E+03 0.75777E-03 0.41942E-04
670 0.10292E+01 0.67050E+03 0.66997E+03 0.75103E-03 0.42321E-04
675 0.10343E+01 0.67550E+03 0.67497E+03 0.74469E-03 0.42547E-04

Table 3: Illustration of Theorems 8, 9 c = 1000. The quantities Above(n) and Below(n) are
defined by (233).

contain n and the ratio χn/c2. The third and fourth column contain the upper and lower
bound on n given, respectively, via (99) in Theorem 8 and (150) in Theorem 9, i.e.

Below(n) = 1 +
2

π

∫ tn

0

√

χn − c2t2

1 − t2
dt = 1 +

2

π

√
χn · E

(

asin (tn) ,
c√
χn

)

Above(n) =
2

π

∫ 1

0

√

χn − c2t2

1 − t2
dt =

2

π

√
χn · E

(

c√
χn

)

, (233)

where E denote the elliptical integrals of Section 2.2, and tn is the maximal root of ψn in
(−1, 1) (see also (154)). The fifth and sixth columns contain the relative errors of these
bounds. The first row corresponds to the minimal n for which χn > c2. We observe that
for a fixed c the bounds become more accurate as n grows. Also, for n = ⌈2c/π⌉ + 1 the
accuracy improves as c grows. Moreover, the lower bound is always more accurate than the
upper bound.

n χn/c2 Above(n) Below(n) Above(n)−n
n

n−Below(n)
n

1 0.29824E-01 0.10395E+01 0.10000E+01 0.39511E-01 0.00000E+00
9 0.18531E+00 0.90625E+01 0.89818E+01 0.69444E-02 0.20214E-02
19 0.36985E+00 0.19069E+02 0.18981E+02 0.36421E-02 0.10180E-02
29 0.54240E+00 0.29075E+02 0.28980E+02 0.25825E-02 0.69027E-03
39 0.70125E+00 0.39082E+02 0.38979E+02 0.21102E-02 0.53327E-03
49 0.84356E+00 0.49096E+02 0.48978E+02 0.19543E-02 0.45122E-03
54 0.90685E+00 0.54110E+02 0.53977E+02 0.20330E-02 0.43263E-03
59 0.96278E+00 0.59146E+02 0.58974E+02 0.24725E-02 0.44189E-03
63 0.99867E+00 0.63420E+02 0.62966E+02 0.66661E-02 0.53355E-03

Table 4: Illustration of Theorems 8, 9 with c = 100. The quantities Above(n) and Below(n)
are defined by (234).

40



Table 4 illustrates Theorems 8, 9 in the case χn < c2 with c = 100. The structure of
Table 4 is the same as that of Tables 1, 2, 3 with the only difference: the third and fourth
column contain the upper and lower bound on n given, respectively, via (100) in Theorems 8
and (150) in Theorem 9, i.e.

Below(n) = 1 +
2

π

∫ tn

0

√

χn − c2t2

1 − t2
dt = 1 +

2

π

√
χn · E

(

asin (tn) ,
c√
χn

)

Above(n) =
2

π

∫ T

0

√

χn − c2t2

1 − t2
dt =

2

π

√
χn · E

(

asin (T ) ,
c√
χn

)

, (234)

where tn and T are the maximal roots of ψn and ψ′
n in the interval (−1, 1), respectively.

The values in the first row grow up to ⌊2c/π⌋, in correspondence with Theorem 14 in
Section 4.1.2. We observe that both bounds in the third and fourth columns are correct
and the lower bound is always more accurate. This behavior is similar to that observed in
Tables 1, 2, 3.

n (n − 2c/π − 1) /c χn

(

π
2 (n + 1)

)2 (

π
2 (n + 1)

)2
/χn - 1

640 0.23802E-02 0.10025E+07 0.10138E+07 0.11248E-01
650 0.12380E-01 0.10105E+07 0.10457E+07 0.34836E-01
660 0.22380E-01 0.10195E+07 0.10781E+07 0.57443E-01
670 0.32380E-01 0.10292E+07 0.11109E+07 0.79396E-01
680 0.42380E-01 0.10395E+07 0.11443E+07 0.10082E+00
690 0.52380E-01 0.10503E+07 0.11781E+07 0.12177E+00
700 0.62380E-01 0.10615E+07 0.12125E+07 0.14229E+00
710 0.72380E-01 0.10731E+07 0.12473E+07 0.16241E+00
720 0.82380E-01 0.10850E+07 0.12827E+07 0.18215E+00
730 0.92380E-01 0.10973E+07 0.13185E+07 0.20152E+00
740 0.10238E+00 0.11100E+07 0.13548E+07 0.22054E+00
750 0.11238E+00 0.11230E+07 0.13916E+07 0.23922E+00
760 0.12238E+00 0.11363E+07 0.14289E+07 0.25757E+00
770 0.13238E+00 0.11498E+07 0.14667E+07 0.27559E+00
780 0.14238E+00 0.11637E+07 0.15050E+07 0.29330E+00
790 0.15238E+00 0.11779E+07 0.15438E+07 0.31069E+00
800 0.16238E+00 0.11923E+07 0.15831E+07 0.32777E+00
810 0.17238E+00 0.12070E+07 0.16229E+07 0.34456E+00
820 0.18238E+00 0.12219E+07 0.16631E+07 0.36105E+00

Table 5: Illustration of Theorem 12 with c = 1000.

Tables 5, 6 illustrate Theorem 12 with c = 1000 and c = 10000, respectively. The first
column contains the PSWF index n, which starts from roughly 2c/π and increases by steps
of c/10. The second column displays the normalized distance dn between n and (2c/π + 1),
defined via the formula

dn =
n − 2c/π − 1

c
. (235)
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n (n − 2c/π − 1) /c χn

(

π
2 (n + 1)

)2 (

π
2 (n + 1)

)2
/χn - 1

6400 0.32802E-02 0.10022E+09 0.10110E+09 0.87670E-02
6500 0.13280E-01 0.10101E+09 0.10428E+09 0.32378E-01
6600 0.23280E-01 0.10191E+09 0.10751E+09 0.55007E-01
6700 0.33280E-01 0.10288E+09 0.11079E+09 0.76977E-01
6800 0.43280E-01 0.10390E+09 0.11413E+09 0.98410E-01
6900 0.53280E-01 0.10498E+09 0.11751E+09 0.11937E+00
7000 0.63280E-01 0.10609E+09 0.12094E+09 0.13991E+00
7100 0.73280E-01 0.10725E+09 0.12442E+09 0.16004E+00
7200 0.83280E-01 0.10845E+09 0.12795E+09 0.17979E+00
7300 0.93280E-01 0.10968E+09 0.13152E+09 0.19918E+00
7400 0.10328E+00 0.11094E+09 0.13515E+09 0.21821E+00
7500 0.11328E+00 0.11224E+09 0.13883E+09 0.23691E+00
7600 0.12328E+00 0.11357E+09 0.14255E+09 0.25526E+00
7700 0.13328E+00 0.11492E+09 0.14633E+09 0.27330E+00
7800 0.14328E+00 0.11631E+09 0.15016E+09 0.29102E+00
7900 0.15328E+00 0.11772E+09 0.15403E+09 0.30842E+00
8000 0.16328E+00 0.11916E+09 0.15795E+09 0.32552E+00
8100 0.17328E+00 0.12063E+09 0.16193E+09 0.34232E+00
8200 0.18328E+00 0.12213E+09 0.16595E+09 0.35883E+00

Table 6: Illustration of Theorem 12 with c = 10000.
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The third column contains χn. The fourth and fifth column contain the upper bound on
χn, defined in Theorem 12, and the relative error of this bound, respectively. We observe
that the bound is slightly better for c = 10000, if we keep dn fixed, and deteriorates as n
grows for a fixed c. In fact, starting from n ≈ (2/π + 1/6) · c, this bound becomes even
worse than (15) (this value is n = 825 for c = 1000 and n = 8254 for c = 10000). Since
Theorem 12 is a simplification of more accurate Theorems 8, 9, the latter observation is not
surprising. Nevertheless, the high accuracy for n ≈ 2c/π and the simplicity of the estimate
make Theorem 12 useful.

i ti+1 − ti
π

f(ti+1)+v(ti+1)/2
π

f(ti)
lower error upper error

44 0.27468E-01 0.27464E-01 0.27470E-01 0.13152E-03 0.63357E-04
45 0.27463E-01 0.27454E-01 0.27467E-01 0.32708E-03 0.15253E-03
46 0.27453E-01 0.27439E-01 0.27460E-01 0.52432E-03 0.24265E-03
47 0.27438E-01 0.27418E-01 0.27447E-01 0.72429E-03 0.33437E-03

60 0.26685E-01 0.26573E-01 0.26741E-01 0.42160E-02 0.21008E-02
61 0.26568E-01 0.26444E-01 0.26630E-01 0.46314E-02 0.23349E-02
62 0.26437E-01 0.26303E-01 0.26506E-01 0.50867E-02 0.25968E-02
63 0.26293E-01 0.26146E-01 0.26369E-01 0.55889E-02 0.28916E-02

70 0.24700E-01 0.24418E-01 0.24863E-01 0.11404E-01 0.66360E-02
71 0.24347E-01 0.24036E-01 0.24533E-01 0.12811E-01 0.76073E-02
72 0.23948E-01 0.23602E-01 0.24158E-01 0.14473E-01 0.87772E-02
73 0.23493E-01 0.23107E-01 0.23733E-01 0.16457E-01 0.10201E-01

83 0.12096E-01 0.10707E-01 0.13206E-01 0.11484E+00 0.91691E-01
84 0.96757E-02 0.81279E-02 0.10948E-01 0.15996E+00 0.13147E+00
85 0.69453E-02 0.52650E-02 0.83714E-02 0.24194E+00 0.20533E+00
86 0.39568E-02 0.22125E-02 0.55074E-02 0.44083E+00 0.39188E+00

Table 7: Illustration of Theorem 10 with c = 100 and n = 87.

Tables 7, 8 illustrate Theorems 10, 15, with c = 100, n = 87 and c = 1000, n = 670,
respectively. The first column contains the index i of the ith root ti of ψn inside (−1, 1). The
second column contains the difference between two consecutive roots ti+1 and ti. The third
and fourth columns contain, respectively, the lower and upper bounds on this difference,
given via (155) in Theorem 10. The last two columns contain the relative errors of these
bounds. We observe that both estimates are fairly accurate when ti is far from 1, and
the accuracy increases with c. The best relative accuracy is about 0.01% for c = 100 and
0.0001% for c = 1000. Both bounds deteriorate as i grows to n. For both values of c the
relative accuracy of the lower bound for i = n − 1 is as low as 44%, and that of the upper
bound is about 39%. In general, the upper bound is always more accurate. We also note
that ti+1− ti decreases monotonically as i grows, which confirms Theorem 15, since χn > c2

in both cases.
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i ti+1 − ti
π

f(ti+1)+v(ti+1)/2
π

f(ti)
lower error upper error

336 0.30967E-02 0.30967E-02 0.30967E-02 0.19367E-05 0.59233E-06
337 0.30967E-02 0.30967E-02 0.30967E-02 0.35775E-05 0.72845E-06
338 0.30967E-02 0.30967E-02 0.30967E-02 0.52185E-05 0.86461E-06
339 0.30967E-02 0.30967E-02 0.30967E-02 0.68599E-05 0.10008E-05

400 0.30948E-02 0.30945E-02 0.30949E-02 0.11172E-03 0.10078E-04
401 0.30948E-02 0.30944E-02 0.30948E-02 0.11359E-03 0.10252E-04
402 0.30947E-02 0.30944E-02 0.30947E-02 0.11547E-03 0.10427E-04
403 0.30947E-02 0.30943E-02 0.30947E-02 0.11735E-03 0.10603E-04

500 0.30813E-02 0.30802E-02 0.30815E-02 0.37302E-03 0.41125E-04
501 0.30811E-02 0.30799E-02 0.30812E-02 0.37699E-03 0.41713E-04
502 0.30808E-02 0.30797E-02 0.30810E-02 0.38101E-03 0.42311E-04
503 0.30806E-02 0.30794E-02 0.30807E-02 0.38507E-03 0.42920E-04

600 0.30127E-02 0.30084E-02 0.30136E-02 0.14255E-02 0.29783E-03
601 0.30109E-02 0.30065E-02 0.30118E-02 0.14549E-02 0.30734E-03
602 0.30090E-02 0.30045E-02 0.30099E-02 0.14853E-02 0.31731E-03
603 0.30071E-02 0.30025E-02 0.30080E-02 0.15168E-02 0.32775E-03

666 0.12704E-02 0.11248E-02 0.13859E-02 0.11465E+00 0.90887E-01
667 0.10176E-02 0.85504E-03 0.11505E-02 0.15973E+00 0.13065E+00
668 0.73133E-03 0.55454E-03 0.88094E-03 0.24173E+00 0.20458E+00
669 0.41703E-03 0.23323E-03 0.58020E-03 0.44073E+00 0.39128E+00

Table 8: Illustration of Theorem 10 with c = 1000 and n = 670.
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